Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Oper Neurosurg (Hagerstown) ; 24(2): 201-208, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2308085

ABSTRACT

BACKGROUND: Graduate surgical education is highly variable across regions and institutions regarding case volume and degree of trainee participation in each case. Dedicated educational curriculum using cadaveric tissue has been shown to enhance graduate surgical training, however with associated financial and utility burden to the institution. OBJECTIVE: To investigate the utility of educational and cost applications of a novel method of combining mixed organic hydrogel polymers and 3-dimensional printed anatomic structures to create a complete "start-to-finish" simulation for resident education in spinal anatomy, instrumentation, and surgical techniques. METHODS: This qualitative pilot study investigated 14 international participants on achievement of objective and personal learning goals in a standardized curriculum using biomimetic simulation compared with cadaveric tissue. A questionnaire was developed to examine trainee evaluation of individual anatomic components of the biomimetic simulators compared with previous experience with cadaveric tissue. RESULTS: A total of 210 responses were acquired from 14 participants. Six participants originated from US residency education programs and 8 from transcontinental residency programs. Survey results for the simulation session revealed high user satisfaction. Score averages for each portion of the simulation session indicated learner validation of anatomic features for the simulation compared with previous cadaveric experience. Cost analysis resulted in an estimated savings of $10 833.00 for this single simulation session compared with previous cadaveric tissue sessions. CONCLUSION: The results of this study indicate a strong potential of establishing biomimetic simulation as a cost-effective and high-quality alternative to cadaveric tissue for the instruction of fundamental spine surgical techniques.


Subject(s)
Internship and Residency , Humans , Pilot Projects , Education, Medical, Graduate/methods , Curriculum , Cadaver
2.
Cureus ; 12(4): e7738, 2020 Apr 20.
Article in English | MEDLINE | ID: covidwho-823803

ABSTRACT

Background The recent COVID-19 pandemic has demonstrated the need for innovation in cost-effective and easily produced surgical simulations for trainee education that are not limited by physical confines of location. This can be accomplished with the use of desktop three-dimensional (3D) printing technology. This study describes the creation of a low-cost and open-access simulation for anatomical learning and pedicle screw placement in the lumbar spine, which is termed the SpineBox. Materials and methods An anonymized CT scan of the lumbar spine was obtained and converted into 3D software files of the L1-L5 vertebral bodies. A computer-assisted design (CAD) software was used to assemble the vertebral models into a simulator unit in anatomical order to produce an easily prototyped simulator. The printed simulator was layered with foam in order to replicate soft tissue structures. The models were instrumented with pedicle screws using standard operative technique and examined under fluoroscopy. Results Ten SpineBoxes were created using a single desktop 3D printer, with accurate replication of the cortico-cancellous interface using previously validated techniques. The models were able to be instrumented with pedicle screws successfully and demonstrated quality representation of bony structures under fluoroscopy. The total cost of model production was under $10. Conclusion The SpineBox represents the first open-access simulator for the instruction of spinal anatomy and pedicle screw placement. This study aims to provide institutions across the world with an economical and feasible means of spine surgical simulation for neurosurgical trainees and to encourage other rapid prototyping laboratories to investigate innovative means of creating educational surgical platforms in the modern era.

SELECTION OF CITATIONS
SEARCH DETAIL